Parameter space analysis suggests multi-site plasticity contributes to motor pattern initiation in Tritonia.

نویسندگان

  • Robert J Calin-Jageman
  • Mark J Tunstall
  • Brett D Mensh
  • Paul S Katz
  • William N Frost
چکیده

This research examines the mechanisms that initiate rhythmic activity in the episodic central pattern generator (CPG) underlying escape swimming in the gastropod mollusk Tritonia diomedea. Activation of the network is triggered by extrinsic excitatory input but also accompanied by intrinsic neuromodulation and the recruitment of additional excitation into the circuit. To examine how these factors influence circuit activation, a detailed simulation of the unmodulated CPG network was constructed from an extensive set of physiological measurements. In this model, extrinsic input alone is insufficient to initiate rhythmic activity, confirming that additional processes are involved in circuit activation. However, incorporating known neuromodulatory and polysynaptic effects into the model still failed to enable rhythmic activity, suggesting that additional circuit features are also required. To delineate the additional activation requirements, a large-scale parameter-space analysis was conducted (~2 x 10(6) configurations). The results suggest that initiation of the swim motor pattern requires substantial reconfiguration at multiple sites within the network, especially to recruit ventral swim interneuron-B (VSI) activity and increase coupling between the dorsal swim interneurons (DSIs) and cerebral neuron 2 (C2) coupling. Within the parameter space examined, we observed a tendency for rhythmic activity to be spontaneous and self-sustaining. This suggests that initiation of episodic rhythmic activity may involve temporarily restructuring a nonrhythmic network into a persistent oscillator. In particular, the time course of neuromodulatory effects may control both activation and termination of rhythmic bursting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Different functions for homologous serotonergic interneurons and serotonin in species-specific rhythmic behaviours.

Closely related species can exhibit different behaviours despite homologous neural substrates. The nudibranch molluscs Tritonia diomedea and Melibe leonina swim differently, yet their nervous systems contain homologous serotonergic neurons. In Tritonia, the dorsal swim interneurons (DSIs) are members of the swim central pattern generator (CPG) and their neurotransmitter serotonin is both necess...

متن کامل

Removal of spike frequency adaptation via neuromodulation intrinsic to the Tritonia escape swim central pattern generator.

For the mollusc Tritonia diomedea to generate its escape swim motor pattern, interneuron C2, a crucial member of the central pattern generator (CPG) for this rhythmic behavior, must fire repetitive bursts of action potentials. Yet, before swimming, repeated depolarizing current pulses injected into C2 at periods similar those in the swim motor program are incapable of mimicking the firing rate ...

متن کامل

Functional recovery after lesion of a central pattern generator.

In cases of neuronal injury when regeneration is restricted, functional recovery can occur through reorganization of the remaining neural circuitry. We found an example of such recovery in the central pattern generator (CPG) for the escape swim of the mollusc Tritonia diomedea. The CPG neurons are bilaterally represented and each neuron projects an axon through one of two pedal commissures. Cut...

متن کامل

Parallel evolution of serotonergic neuromodulation underlies independent evolution of rhythmic motor behavior.

Neuromodulation can dynamically alter neuronal and synaptic properties, thereby changing the behavioral output of a neural circuit. It is therefore conceivable that natural selection might act upon neuromodulation as a mechanism for sculpting the behavioral repertoire of a species. Here we report that the presence of neuromodulation is correlated with the production of a behavior that most like...

متن کامل

Hidden synaptic differences in a neural circuit underlie differential behavioral susceptibility to a neural injury

Individuals vary in their responses to stroke and trauma, hampering predictions of outcomes. One reason might be that neural circuits contain hidden variability that becomes relevant only when those individuals are challenged by injury. We found that in the mollusc, Tritonia diomedea, subtle differences between animals within the neural circuit underlying swimming behavior had no behavioral rel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 98 4  شماره 

صفحات  -

تاریخ انتشار 2007